Hamiltonian model of heat conductivity and Fourier law
نویسندگان
چکیده
منابع مشابه
Fourier Law: a Challenge to Theorists
We present a selective overview of the current state of our knowledge (more precisely of our ignorance) regarding the derivation of Fourier’s Law, J(r) = −κ∇T (r); J the heat flux, T the temperature and κ, the heat conductivity. This law is empirically well tested for both fluids and crystals, when the temperature varies slowly on the microscopic scale, with κ an intrinsic property which depend...
متن کاملUsing the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity
The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملThermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...
متن کاملFourier's law from closure equations.
We sketch a rigorous derivation of Fourier's law from a system of closure equations for a nonequilibrium stationary state of a Hamiltonian system of coupled oscillators subjected to heat baths on the boundary. The local heat flux is proportional to the temperature gradient with a temperature dependent heat conductivity and the stationary temperature exhibits a nonlinear profile.
متن کامل